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A linear stability analysis is performed for the study of the onset of vortex instability
in free convection flow over an inclined heated surface in a porous medium, where the
wall temperature is a power function of the distance from the origin. The variation of
permeability in the vicinity of the solid boundary is approximated by an exponential
function. The variation rate itself depends slowly on the streamwise coordinate, such
as to allow the problem to possess a set of solutions, invariant under a group of trans-
formations. Velocity and temperature profiles as well as local Nusselt number for the
base flow are presented for the uniform permeability UP and variable permeability VP
cases. The resulting variable coefficient eigenvalue problem is solved numerically. The
critical parameter Ra∗x tan2 φ and the critical wave number k∗ are computed for differ-
ent prescribed wall temperature distribution of the inclined surface for both UP and VP
cases. It is found that the larger the inclination angle with respect to the vertical, the
more susceptible is the flow for the vortex mode of disturbances; and in the limit of zero
inclination angle (i.e vertical heated plate) the flow is stable for this form of disturbances.
Also, it is found that the variable permeability effect tends to increase the heat transfer
rate and destabilize the flow to the vortex mode of disturbance.

Keywords: Free convection, vortex instability, inclined surface, porous media, variable
permeability, variable porosity

1. Introduction

The problem of the vortex mode of instability in natural convection flow over a
horizontal or an inclined heated plate in a saturated porous medium has recently
received considerable attention. This is primarily due to a large number of technical
applications, such as fluid flow in geothermal reservoirs, separation processes in
chemical industries, storage of radioactive nuclear waste materials, transpiration
cooling, transport processes in aquifers, etc. Hsu et al. [1] analyzed the vortex
mode of instability of horizontal natural convection flows in a uniform porosity
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medium. Jang and Chang [2] studied the vortex instability of horizontal natural
convection in a porous medium resulting from combined heat and mass buoyancy
effects.

For an inclined surface, the buoyancy force causing motion has a component in
both the tangential and normal directions. This causes a pressure gradient across
the boundary layer and leads to a theoretical analysis more complicated than that
for a vertical or a horizontal surface. Hsu and Cheng [3] studied the vortex insta-
bility in buoyancy–induced flow over inclined heated surfaces in a uniform porosity
medium. Jang and Chang [4] re–examined the same problem for an inclined plate,
where both the streamwise and normal components of the buoyancy force are re-
tained in the momentum equations. The effects of a density extremum on the
vortex instability of an inclined buoyant layer in porous media saturated with cold
water were examined by Jang and Chang [5]. Rees and Basson [6] presented an ac-
count of the linear instability of Darcy–Boussineq convection in a uniform, unstably
stratified porous layer at arbitrary inclinations from the horizontal.

All of the above mentioned papers considered with the Darcy formulation with
uniform porosity. In some applications, such as fixed–bed catalytic reactors, packed
bed heat exchangers and drying, the porosity is not uniform but has a maximum
value at the wall and a minimum value away from the wall. This wall–channeling
phenomenon has been reported by a number of investigators such as Vafai [7],
Chandrasekhara et al. [8], Chandrasekhara [9] and Hong et al. [10] for forced,
natural and mixed convection boundary layer flows adjacent to a horizontal and
vertical surfaces. It is shown that the variable porosity effect increases the tem-
perature gradient adjacent to the wall resulting in the enhancement of the surface
heat flux. Chandrasekhara and Namboodiri [11] obtained the similarity solution for
combined free and forced convection in the presence of inclined surface in saturated
porous media with variable permeability. Ibrahim and Hassanien [12] reported non-
similarity solutions for the variable permeability on combined convection along a
non–isothermal wedge in a saturated porous medium. The effect variable porosity
on vortex instability of a horizontal mixed and free convection flow in a saturated
porous medium was studied by Jang and Cheng [13], Ibrahim et al. [14] and Ibrahim
and Elaiw [15].

The purposed of this paper is to study the effect of variable permeability on
vortex instability free convection boundary layer flow over an inclined heated plate
in a saturated porous medium. The stability analysis is based on the linear theory.
The disturbance quantities are assumed to be in the form of a stationary vortex roll
that is periodic in the spanwise direction, with its amplitude function depending
primarily on the normal coordinate and weakly on the streamwise coordinate. The
resulting equations for the amplitude of the disturbances are solved based on the
local similarity method. The resulting eigenvalue problem was solved numerically
using finite difference scheme.

2. Analysis

2.1. The main flow

Consider an inclined impermeable surface embedded in a porous medium as shown
in Fig. 1. The axial and normal coordinates are x and y, where xrepresents the
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distance along the plate from its leading edge, and y coordinate pointed toward the
porous medium. The wall temperature is assumed to be a power function of x, i.e.
Tw = T∞ + Axm, where A is a constant and T∞ is the free stream temperature.
The angle of inclination φ is measured from the vertical.

Figure 1 The physical model and coordinate system

In the formulation of the present problem the following common assumptions are
made: the local thermal equilibrium exists between the fluid and solid phases; fluid
properties are assumed to be constant except for density variations in the buoyancy
force term. Under the Boussinesq and the boundary layer approximations, the
governing equations are given by

∂u

∂x
+

∂v

∂y
= 0 (1)

u = −K

µ

[
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+ ρg cos φ

]
(2)
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∂y
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∂2T

∂x2
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∂
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(
α

∂T

∂y

)
(4)

ρ = ρ∞ [1− β(T − T∞)] (5)

where u and v are the Darcian velocities in the x and y directions; P is the pressure;
T is the temperature; ρ is the fluid density; µ is the dynamic viscosity; K is the
permeability of the porous medium; β is the thermal expansion coefficient of the
fluid and α = λm/(ρ∞cp)f is the effective thermal diffusivity of the porous medium,
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λm denotes the effective thermal conductivity of the saturated porous medium and
(ρ∞cp)f denotes the product of density and specific heat of the fluid.

The pressure terms appearing in Eqs (2) and (2) can be eliminated through
cross–differentiation. The boundary layer assumptions yields ∂/∂x << ∂/∂y and
v << u. With ψ being a stream function such that u = ∂ψ/∂y, v = −∂ψ/∂x, the
equations (1)–(5) become

∂2ψ

∂y2
= −K

d

dy

[
1
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]
∂ψ
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− Kρ∞gβ cosφ

µ
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∂2T

∂y2
+

dα

dy

∂T

∂y
(7)

The boundary conditions of this problem are

at y = 0 v = −∂ψ
∂x = 0 Tw = T∞ + Axm

as y →∞ u = ∂ψ
∂y → 0 T → T∞

(8)

We define a set of solutions, which are invariant under group transformations as
follows:

η(x, y) = Ra1/2
x

y

x
f(η) =

ψ(x, y)

α∞Ra
1/2
x

θ(η) =
T − T∞
Tw − T∞

(9)

where

Rax =
K∞ρ∞gβ(Tw − T∞)x cos φ

µα∞
is the modified local Rayleigh number. Here we consider that the porosity εand
permeability K vary exponentially from the wall (Chandrasekhara [9])

ε = ε∞(1 + de−y/γ) (10)
K = K∞(1 + d∗e−y/γ) (11)

where ε∞ and K∞ are the porosity and permeability at the edge of the boundary
layer; d and d∗ are constants whose values are taken as 1.5 and 3 respectively,
(Chandrasekhara [9]). Further, α = λm/(ρ∞cp)f also varies since it is related to
the effective thermal conductivity of the saturated porous medium λm, where λm

can be computed according to the following semi–analytical expression given by
Nayagam et al. [16]:

λm = ελf + (1− ε)λs (12)

where λf and λs are the thermal conductivities of the fluid and solid respectively.
Hence the expression for the thermal diffusivity has the form

α = α∞
[
ε∞(1 + de−y/γ) + σ

{
1− ε∞(1 + de−y/γ)

}]
(13)

where α∞ = λf/(ρ∞cp)f and σ = λs/λf . Equations (6) and (7) become

f ′′ +
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f ′ = (1 + d∗e−η)θ′ (14)

α(η)
α∞

θ′′ +
d

dη

(
α(η)
α∞

)
θ′ = mf ′θ − m + 1

2
fθ′ (15)
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with boundary conditions

f(0) = 0 θ(0) = 1
f ′(∞) = 0 θ(∞) = 0

}
(16)

In the above equations, the primes denote the derivatives with respect to η

and γ = x/Ra
1/2
x . In terms of new variables, it can be shown that the velocity

components and the local Nusselt number are given by

u(x, y) =
α∞Rax

x
f ′(η) (17)

v(x, y) = −α∞Ra
1/2
x

2x
[(m + 1)f + (m− 1)ηf ′] (18)

Nux/Ra1/2
x = −θ′(0) (19)

2.2. The disturbance flow

The standard method of linear stability theory yields the following:
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where the subscripts 0 and 1 signify the base flow and disturbance components
respectively.

Following the method of order of magnitude analysis described in detail by Hsu
and Cheng [3], the terms, ∂u1/∂x, ∂P1/∂x and ∂2T1/∂x2 in Eqs (20), (21) and (24)
can be neglected. The omission of ∂u1/∂x in Eq. (20) implies the existence of a
disturbance stream function ψ1, such as

w1 =
∂ψ1

∂y
v1 = −∂ψ1

∂z
(25)

Eliminating P1 from Eqs (22) and (23) and applying Eq. (25), leads to
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As in Hsu et al. [1], we assume the three–dimensionaless disturbances for neutral
stability are of the form

(ψ1, u1, T1) = [ψ(x, y), u(x, y), T (x, y)] exp(iaz) (29)

where a is the spanwise periodic wave number. Substituting Eq. (29) into Eqs
(26)–(28) yields

u =
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Eqs (30)–(32) are solved based on the local similarity approximation (Sparrow
et al. [17]), wherein the disturbances are assumed to have weak dependence in the
streamwise direction (i.e. ∂/∂x << ∂/∂η). Introducing the following dimensionless
quantities (Hsu et. al. [1]),
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Ra
1/2
x
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x
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we obtain the following system of equations for the local similarity approximation:
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with the boundary conditions

F (0) = F ′′(0) = F (∞) = F ′′(∞) = 0 (37)

where
G =

1
1 + d∗e−η

Eq. (36) along with its boundary condition (37) constitutes a fourth–order
system of linear ordinary differential equations for the disturbance amplitude dis-
tributions F (η). For fixed values of d, d∗, ε∞, σ, k and m, the solution F is an
eigenfunction for the eigenvalue Rax tan2 φ.

3. Numerical Scheme

In this section, we compute the approximate value of Rax tan2 φ for the Eq. (36)
with the boundary conditions (37). An implicit finite difference method is used to
solve first the base flow, system Eqs (14) and (15), and the results are stored for
a fixed step size h, which is small enough to predict accurate linear interpolation
between mesh points. The domain is 0 ≤ η ≤ η∞, where η∞ is the edge of the
boundary layer of the basic flow. The problem is discretized with standard centered
finite differences of order two, following Usmani [18]. Solving eigenvalue problem is
achieved by using the subroutine GVLRG of the IMSL library, see [19].

4. Results and Discussion

Numerical results are obtained for the parameter m, for both uniform permeability
(UP), i.e. d = d∗ = 0 and variable permeability (VP), i.e. d, d∗ 6= 0 cases. For the
purpose of numerical integration we have assumed d = 1.5, d∗ = 3, σ = 0.2 and
ε∞ = 0.4.

Figs 2–3 show the effect of the parameter m on the dimensionless tangential
velocity and temperature profiles. It seen that, the velocity gradient at the wall in-
creases and the momentum boundary layer thickness decreases asm increases. Also,
as m increase, the thermal boundary layer thickness decreases and the temperature
gradient at the wall increases. This means a higher value of the heat transfer rate
is associated with higher values m. Further, from these figures, variable permeabil-
ity effect increases the velocity gradient and reduces the thermal boundary layer
leading to an enhancement of heat transfer rate.

Numerical solutions of the local Nusselt number for selected values of m are
shown in Fig. 4 for UP and VP cases. As expected, the local Nusselt number
increases as m increases. This increment is more higher for VP case than UP
one. Fig. 5 shows the neutral stability curves, for the present problem where the
eigenvalues Rax tan2 φ as a function of dimensionless wave number k for selected
values of m and for both uniform permeability UP and variable permeability VP. It
is observed that as m increases, the neutral stability curves shift to higher parameter
Rax tan2 φ. In the case of the variable permeability, the neutral stability curves shift
to lower Rax tan2 φ and higher wave number k, indicating a destabilization of the
flow. At a given value of m, the minimum value of Rax tan2 φ as shown in Fig. 5,
is the critical parameter for the onset of vortex instability in free convection flow
about inclined surface in porous medium.
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Figure 2 Velocity profile for selected values of m

Figure 3 Temperature profile for selected values of m
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Figure 4 Local Nusselt number vs m

Figure 5 Eigenvalues as a function of dimensionless spanwise wave number
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Figure 6 The critical eigenvalues as a function of m

Figure 7 The critical wave numbers as a function of m

Figure 8 Values of Ra∗x tan φ for selected values of m
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The critical parameter Ra∗x tan2 φ and the associated wave number k∗as a function
of m for both UP and VP cases are shown in Figs 6 and 7. In general the values of
Ra∗x tan2 φ and k∗ increase as m increases for both UP and VP cases. Further, the
results indicate that the variable permeability effect tends to destabilize the flow to
the vortex mode of disturbance. Furthermore, the results of the critical values of the
parameters Ra∗x tan2 φ and k∗ in UP case are in good agreement with Hsu and Cheng
[3] as shown in Figs 6 and 7. It will be of interest to examine the special case of a
vertical impermeable surface with φ = 0. The finite value of Ra∗x tan2 φ implies that
the critical Raleigh number Ra∗x = K∞ρ∞gβ(Tw−T∞)x/µα∞ for vortex instability
in free convection flow about a vertical surface in a porous medium is infinite since
both sin φ and tan φ approach to zero as φ → 0. It follows therefore that vortex
mode of instability will not manifest in free convection flow about a vertical surface
in a porous medium. Fig. 8 is a plot showing the effect of inclination angle φ from
φ = 0 (for a vertical surface) up to φ = 650 for which the present analysis is valid.
It is found that the larger the inclination angle with respect to the vertical, the
more susceptible is the flow for the vortex mode of disturbances; and the limit of
zero inclination angle (i.e. vertical heated plate) the flow is stable for this form of
disturbances.

5. Conclusions

Vortex instability of free convection flow over an inclined impermeable surface in a
porous medium incorporating the variation of permeability and thermal conductiv-
ity is studied, where the wall temperature is a power function of the distance from
the origin. The permeability of the medium is assumed to vary exponentially with
distance from the wall. Velocity and temperature profiles as well as local Nusselt
number for the base flow are presented for the uniform and variable permeability
cases. The numerical results demonstrate that variable permeability effect tends
to increase the heat transfer rate and destabilize the flow to the vortex mode of
disturbance. It is found that the larger the inclination angle with respect to the
vertical, the more susceptible is the flow for the vortex mode of disturbances; and
the limit of zero inclination angle (i.e vertical heated plate) the flow is stable for
this form of disturbances.

References

[1] Hsu C.T., Cheng P. and Homsy G.M.: Instability of free convection flow over a
horizontal impermeable surface in a porous medium, Int. J. Heat Mass Transfer, 21,
1221-1228, 1978.

[2] Jang J.Y. and Chang W.J.: The flow and vortex instability of horizontal natural
convection in a porous medium resulting from combined heat and mass buoyancy
effects, Int. J. Heat Mass Transfer, 31, 769–777, 1988.

[3] Hsu C. T. and Cheng P.: Vortex instability in buoyancy–induced flow over inclined
heated surfaces in a porous medium, J. Heat Transfer, 101, 660–665, 1979.

[4] Jang J.Y. and Chang W.J.: Vortex instability in buoyancy–induced inclined
boundary layer flow in a saturated porous medium, Int. J. Heat Mass Transfer, 31,
759–767, 1988.



66 Ibrahim, FS

[5] Jang J.Y. and Chang W.J.: Maximum density effects on vortex instability of
horizontal and inclined buoyancy-induced flows in porous media, J. Heat Transfer,
111, 572-574, 1989.

[6] Rees D.A.S. and Basson A.P.: The onset of Darcy–Benard convection in an in-
clined layer heated from below, Acta Mechanica, 144, 103–118, 2000.

[7] Vafai K.: Convection flow and heat transfer in variable porosity media, J. Fluid
Mech., 147, 233–259, 1984.

[8] Chandrasekhara B.C., Namboodiri P.M.S. and Hanumanthappa, A.R.:
Similarity solutions for buoyancy induced flow in a saturated porous medium adjacent
to impermeable horizontal surface, Warm und Stoffubetragung, 18, 17–23, 1984.

[9] Chandrasekhara B.C.: Mixed convection in the presence of horizontal imper-
meable surfaces in saturated porous media with variable permeability, Warm und
Stoffubetragung, 19, 195–201, 1985.

[10] Hong J.T., Yamada Y. and Tien C.L.: Effects of non–Darcian and nonuni-
form porosity of vertical–plate natural convection in porous media, Int. J. Heat Mass
Transfer, 109, 356–362, 1987.

[11] Chandrasekhara B.C. and Namboodiri P.M.S.: Influence of variable perme-
ability on combined free and forced convection about inclined surfaces porous media,
Int. J. Heat Mass Transfer, 28, 199–206, 1985.

[12] Ibrahim F.S. and Hassanien I.A.: Influence of variable permeability on combined
convection along a non–isothermal wedge in saturated porous medium, Transport in
Porous Media, 39, 57–71, 2000.

[13] Jang J. Y. and Chen J.: Variable porosity effect on vortex instability of a horizontal
mixed convection flow in a saturated porous medium, Int. J. Heat Mass Transfer, 32,
1573–1582, 1993.

[14] Ibrahim F.S., Elaiw A.M. and Bakr A.A.: The influence of variable permeability
on vortex instability of a horizontal combined free and mixed convection flow in a
saturated porous medium, Z. Angew. Math. Mech. (ZAMM), 87, 528–536, 2007.

[15] Ibrahim F.S. and Elaiw A.M.: Vortex instability of mixed convection boundary
layer flow adjacent to a non–isothermal horizontal surface in a porous medium with
variable permeability, Journal of Porous Media, 11, 305–321, 2008.

[16] Nayagam M., Jain P. and Fairweather G.: The effect of surface mass transfer
on buoyancy–induced flow in a variable porosity medium adjacent a horizontal heated
plate, Int. Comm. Heat Mass transfer, 14, 495–506, 1987.

[17] Sparrow E.M., Quack H. and Boerner C.T.: Local nonsimilarity boundary layer
solutions, AIAA Journal, 8, 1936-1942, 1970.

[18] Usmani R.A.: Some new finite difference methods for computing eigenvalues of
two–point boundary value problems, Comp. Maths. With Applic., 9, 903–909, 1985.

[19] IMSL , References Manual, IMSL, Inc., Houston, TX, 1990.



Variable Permeability Effect on Vortex ... 67

Nomenclature

A , m real constants in equation (8)
d, d∗ constants defined in equations (10), (11)
f dimensionless base state stream function
F dimensionless disturbance stream function
g gravitational acceleration
i complex number
k dimensionless wave number
a spanwise wave number
P Pressure
K permeability of porous medium
Nux local Nusselt number
Rax local Rayliegh number
T fluid temperature
u Darcy’s velocity in x-direction
v Darcy’s velocity in y-direction
w Darcy’s velocity in z-direction
x coordinate in downstream direction
y coordinate normal to bounding surface
z coordinate tangent to bounding surface
Greek symbols
α thermal diffusivity
φ inclination angle
β volumetric coefficient of thermal expansion
ε porosity of the saturated porous medium
η pseudo-similarity variable
θ dimensionless base state temperature
Θ dimensionless disturbance temperature
λf thermal conductivity of the fluid
λs thermal conductivity of the solid
λm effective thermal conductivity of the saturated porous medium
µ dynamic viscosity of the fluid
ρ
σ

fluid density
ratio of thermal conductivity of the solid to the fluid

ψ stream function
Subscripts
w conditions at the wall
∞ conditions at the free stream
0 basic undisturbed quantities
1 disturbed quantities
* critical value
/ differentiation with respect to η




